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A B S T R A C T

A compact low loss wideband diplexer is introduced by using stacked 2D and 3D structures through 3D advanced
packaging and through glass vias (TGV). An inductor is designed by using stacked 2D and 3D structures to reduce
the coupling effect between adjacent 2D inductors located in the same layer. It can greatly improve the Q factor
yet minimize the chip size. This low loss, small size diplexer is developed by virtue of a modified topology and
the proposed stacked 2D and 3D structures. The designed diplexer with a compact size of
1.6mm× 0.8mm× 0.25 mm is fabricated using 3D glass-based advanced packaging technology and measured
by on-wafer probing. The measured results indicate that it achieves an insertion loss less than 0.8 dB and 0.9 dB
and an isolation better than 20 dB and 17.5 dB in the bands of 0.699 GHz-0.960 GHz and 1.71 GHz-2.69 GHz,
respectively. In comparison with the previously reported designs, the proposed diplexer shows the superior
advantages of smaller size and lower insertion loss.

1. Introduction

Filtering diplexers with low insertion loss, high isolation and mini-
aturized size play significant roles in RF systems. Designing diplexers
with good performance are critical and challenging for dual band ap-
plications in 3G and 4G bands, which are attractive choices for RF sys-
tems and wireless communication systems nowadays.

In recent years, many diplexer design methods have been proposed,
including electric and magnetic coupling [1–3], mixed multimode res-
onators [4–6], electromagnetic perturbation technology [7], metal strip
line resonators [8], releasable filling structure technique [9], and so on.
In [1], the diplexer was designed by virtue of coupling, which can
achieve a high-isolation and wide-stopband performance. However, its
insertion loss is 2.3 dB, which is too large for the applications in wireless
communication systems. In [4], the diplexer was designed by using
multimode, which achieved an insertion loss of 1.3 dB. However, its
circuit size is 33.6mm× 23.4mm, which is too large for integration and

packaging. In [8], the diplexer with an insertion loss of 1.0 dB was
developed, which meets the loss criterion of RF systems. However, the
diplexer is working at 85.6 GHz and 94.5 GHz, which is out of 3G, 4G,
5G and sub-6G bands. To obtain the diplexers working at the lower
bands with low insertion loss, some designs have been reported [10–14].
In [10], a diplexer working at 2.4 GHz − 2.5 GHz and 5.15 GHz −

5.85 GHz bands were reported with insertion losses less than 1.67 dB
and 1.58 dB, respectively. However, the device size of
14.6 mm× 10.48mm is too large. And in [11], a (2.4 GHz WLAN/
3.5 GHz WiMax) diplexer with a size of 23.8 mm× 11.5 mm is
designed, which is not suit for integration. In [12], a diplexer was re-
ported with an insertion loss less than 0.41 dB, but its size is also too
large. There are some compromises among small size, low insertion loss,
and working frequency in the above diplexer designs. Besides, to achieve
the high-isolation performance, some coupling methods have been
introduced in the designs reported [1–3], but the insertion loss and size
are always too large. And some novel structures [14–19] with high Q
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factor are reported to reduce the loss, but the size is also too large to be
integrated. Therefore, to obtain the small size and low insertion loss, a
stacked 2D and 3D structures with no coupling is proposed here.

In this work, a compact and low-loss diplexer working at the 3G and
4G bands is developed using a 3D glassed-based advanced packaging
technology. This diplexer consists of stacked multiple 2D and 3D
structures to resolve the compromising issue between low insertion loss
and small size. The low loss can be obtained by using high-Q 3D
inductor, whereas the small-size is achieved by stacking 2D inductor and
3D-inductor together, which can reduce the coupling effect between
adjacent 2D inductors located in the same layer. Moreover, a modified
topology is introduced in this diplexer, which can achieve a good low-
pass and bandpass performance and generate three transmission zeros
outside each operating band for high out-of-band rejections. The
designed diplexer by virtue of a modified topology and the proposed
stacked 2D and 3D structures has a size of 1.6mm× 0.8mm× 0.25 mm
and achieves an insertion loss less than 0.8 dB and 0.9 dB and an
isolation better than 20 dB and 17.5 dB in the bands of 0.699 GHz-
0.960 GHz (the fractional bandwidths is 31.46%) and 1.71 GHz-
2.69 GHz (the fractional bandwidths is 44.55%), respectively.

2. Proposed diplexer design

2.1. Stacked 2D planar inductor and 3D inductor

It is well known that the inductors placed on the same layer can
generate strong coupling, which not only affects the performance of
individual inductors but also is hardly handled during optimization. The
inductors could be placed far apart to reduce the coupling. However, it
enlarges the chip size. It is highly desirable to reduce unnecessary
coupling effects yet achieve size miniaturization. Fig. 1a shows two
identical 2D planar inductors, which have a size of 750 μm× 750 μm
and an inner radius of 300 μm, placed in the same layer. The distance of
the two planar 2D inductors is denoted as d1. Port 1 and port 2 are
defined at an end of each 2D inductor, as shown in Fig. 1a. To study the
coupling effect, the S-Parameter is computed when distance d1 increases
from 20 μm to 220 μmwith a step size of 40 μm. The coupling coefficient
k can be determined as [1]

k =
f202 − f201
f202 + f201

(1)

where f01 and f02 are the frequencies of two transmission poles. Fig. 1b
depicts the coupling coefficient versus d1. When the d1 is greater than
220 μm, as shown in Fig. 1b, the coupling between adjacent 2D planar
inductors is negligible. Therefore, to reduce the coupling effect between
adjacent 2D planar inductors, it is necessary to increase the distance d1,
which is, however, not conducive to the size miniaturization.

To solve the issue above, a new design with stacked 2D planar
inductor and 3D inductor is herein introduced. Fig. 2a shows the stacked
planar 2D inductor and 3D inductor on the 3D glassed-based advanced
packaging technology. The 3D inductor is constructed in the BM1, TGV
and M1 layers, whereas the 2D inductor is constructed in the M2 layer.
The MIM capacitors are located at the M1, VIA and M2 layers. The
thicknesses of the BM1, TGV, M1, VIA and M2 layers are 5 μm, 230 μm,
5 μm, 5 μm and 5 μm, respectively. The 2D inductor is located on the top
layer (M2), whereas the 3D inductor is located on the bottom layers
(BM1, TGV and M1), as shown in Fig. 2b. The 2D inductor occupies a
size of 750 μm× 750 μm with an inner radius of 300 μm, while the 3D
inductor occupies a size of 800 μm× 700 μm. The distance from the
center of the 2D inductor to the edge of the 3D inductor is defined as d2,
which increases from 0 μm to 1000 μm with a spacing of 200 μm. When
d2= 800 μm, there is no stacking area between the 2D inductor and the
3D inductor.

The magnetic field distributions of 2D planar inductor and 3D
inductor are shown in Fig. 2c and 2d, respectively. Since the current
loops in the stacked 2D planar inductor and 3D inductor are virtually
orthogonal each other, it can be inferred from the magnetic field
perspective that there is almost no coupling between them. It can be
concluded that the coupling coefficient k is almost zero regardless how
close the stacked 2D planar inductor and 3D inductor could be. There-
fore, this design with stacked 2D planar inductor and 3D inductor can
greatly miniaturize the design size. In addition, since the 3D inductor
has a higher Q factor than the pure 2D planar inductor of the same area
size [14], the simulated inductance and Q factor of the 2D planar
inductor and high-Q 3D inductor with the similar dimension of

Fig. 1. (a) The structure of the planar 2D inductors. (b) Simulated coupling coefficient results of the two plannar 2D inductors.
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Fig. 2. (a) Cross-section of glass-based 3D packaging technology. (b) Stacked 2D and 3D inductors. (c) Magnetic field distributions of 2D planar inductor. (d)
Magnetic field distributions of 3D inductor. (e) The structure of the 2D inductor and 3D inductor. (f) The Q factor and Inductance of the 2D inductor and 3D inductor.
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240 μm× 220 μm are compared in Fig. 2e and 2f. It shows the Q factor
(about 35~ 50 in operating bands) of this 3D inductor is also twice as
high as that of the 2D planar inductor, while the inductances of both

inductors are similar in the operating frequency range 0.699–0.96 GHz
and 1.71–2.69 GHz. Therefore, the solution of using high-Q 3D inductor
can reduce the insertion loss of the designed filter. Then this design with
stacked 2D planar inductor and 3D inductor not only miniaturizes the
design size, but also achieves high Q and reduces the insertion loss.

2.2. Proposed diplexer

The 3D layout of a proposed diplexer using multiple copies of stacked
2D planar inductor and 3D inductor is shown in Fig. 3a. And the 3D
layout is modeled by UltraEM [20], it is composed of a low-pass filter
and a band-pass filter. The proposed diplexer has a miniatured size of
1.6 mm× 0.8mm× 0.25mm and is fabricated in the 3D glass-based
advanced packaging technology. In Fig. 3a, L1 and L4 are 2D in-
ductors, while L2 and L3 are 3D inductors. Moreover, L1 and L2 form a
design of stacked 2D and 3D inductors, whereas L3 and L4 form another
design of stacked 2D and 3D inductors. As shown in Fig. 3a, multiple
copies of stacked 2D and 3D inductors can make the diplexer design
much more compact.

Fig. 3b illustrates the equivalent circuit of the proposed diplexer and
the simulated results of the circuit is shown in Fig. 3c. And the insertion
loss less than 0.7 dB and 0.8 dB, the return loss better than 17 dB and
15 dB, and the isolation better than 23 dB and 20 dB in the operating
bands. The modified topology simulated by the FDSPICE [21] is intro-
duced in this diplexer, which can achieve a good low-pass and band-pass
performance and generate three transmission zeros outside each oper-
ating band for high out-of-band rejections. To analyze the low-pass
circuit, because these two port networks are reciprocal, Z21= Z12, and
the Z parameters can be written as

Z12 = Z21

=
j(1 − ω2L1C1)(1 − ω2L2C2)

− ω[C3(1 − ω2L2C2)(1 − ω2L1C1) − ω2C1C3L2 + C1(1 − ω2L2C2) ]
(2)

where ω is the frequency. The corresponding S parameters can be ob-
tained as

S12 =
2Z12Z0

ΔZ
(3)

Once the frequency of S12= 0 is determined, the transmission zeros
frequency ω can be calculated as

ω1 =

̅̅̅̅̅̅̅̅̅̅

1
L1C1

√

,ω2 =

̅̅̅̅̅̅̅̅̅̅

1
L2C2

√

(4)

herein, it is assumed that C1= 0.79 pF, C2= 1.01 pF, C3= 4.35 pF,
and L1= 1.39 nH, and L2= 6.97 nH. Based on (2), it can be found that
the two transmission zeros of the low-pass filter are located at 4.75 GHz
and 1.9 GHz. Moreover, in order to analyze the band-pass circuit, and

these two port networks are reciprocal, the Y parameters can be written
as

The corresponding S parameters can be obtained as

S12 =
− 2Y12Y0

ΔY
(6)

the transmission zeros frequencies ω3 and ω4 can be calculated as

Y12 = Y21 = −
jωC4C5(1 − ω2L3C6)(1 − ω2L4C7)

C6 + C4(1 − ω2L3C6)(1 − ω2L4C7 − ω2L4C5) + C5(1 − ω2L3C6)(1 − ω2L4C7)
(5)

Fig. 3. Proposed diplexer. (a) 3D layout; (b) Equivalent circuit; (c) the simu-
lated results of the equivalent circuit.
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ω3 =

̅̅̅̅̅̅̅̅̅̅
1

L3C6

√

, ω4 =

̅̅̅̅̅̅̅̅̅̅
1

L4C7

√

(7)

Herein, it is assumed that C4= 3.35 pF, C5= 8.75 pF, C6= 8.52 pF,
C7= 0.13 pF, L3= 3.93 nH, and L4= 6.51 nH. Based on (5), it can be
shown that the two transmission zeros of the band-pass filter are located
at 0.9 GHz and 5.28 GHz. By combining the band-pass and low-pass
filters into a diplexer, there are some influences caused by the para-
sitic parameters. Therefore, an additional transmission zero may be
generated outside each of the two passbands, which are located at

1.1 GHz and 5. 8 GHz, respectively. The out of band transmission zero of
the low-pass filter can be controlled by adjusting the values of L1, C1, L2,
and C2, and by adjusting the values of L3, C6, L4, and C7, the transmission
zeros of the band-pass filter can be controlled. Therefore, the proposed
diplexer can achieve high selectivity and operate in different frequency
bands.

And to directly obtain the dimensions of the inductors and capaci-
tors, the EM simulation have been carried out. Since the capacitance can
be defined as C = ε0εrS

d , where C represents capacitance (Farad), ε0 is the
dielectric constant in vacuum (approximately 8.854187817× 10^− 12F/

Fig. 4. (a) Micrograph of the proposed diplexer. (b) Simulated and measured S parameters of the proposed diplexer. (c) the enlarged images of the two-passband
insertion loss in (b). (d) Simulated and measured isolations of the proposed diplexer. (e) Simulated and measured Return loss of the proposed diplexer.
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m), εr is the relative dielectric constant of the medium, S is the area of
parallel plates (square meters), and d is the distance between parallel
plates (meters). In the TGV-based technology we used, C can be calcu-
lated, εr= 6.0, and d= 0.2 μm, so the S can be obtained and the size of
the capacitors can be obtained. However, the inductance can be calcu-
lated by the formula (2) and (5), and to achieve these inductances, the
expression im(1/Y(1,1))/(2*pi*freq) *1e9 were used into the EM simu-
lation. By achieving the same calculated inductance values as the ones in
electromagnetic simulation, the exact dimensions of the inductors can
be obtained in electromagnetic simulation software. And then the final
dimensions of the designed diplexer can be achieved.

3. Measurement

The proposed diplexer is simulated and designed by the full-wave
electromagnetic simulator, UltraEM, from Faraday Dynamics [16].
The micrograph of the fabricated TGV-based diplexer is shown in
Fig. 4a. The layout size of the fabricated BPF chip is
1.6 mm× 0.8mm× 0.25mm. Due to the influence of parasitic param-
eters, compared with the circuit level simulation results, the out of band
of the low-pass filter in the electromagnetic level simulation is missing
one transmission zero. The electromagnetic simulated and measurement
results of the proposed diplexer are compared from Fig. 4b to Fig. 4e.
The good agreement between the simulated and measured results is
observed. The fabricated diplexer is measured on-chip using the Key-
sight N5244A PNA-X vector network analyzer and Cascade summit-
11000 probe station. We applied the SOLT de-embedding method dur-
ing the measurement process which is based on a 12-item error model
and can reduce the impact of system errors on the measurement results.
And we set the frequency step size very small about 10MHz during the
process of measurement. Therefore, the measured curves are smooth.
However, compared with the simulated results, the measured results
have a slight frequency shifted in the upper band due to the fabrication
tolerance. And from the measured results, this design can achieve an
insertion loss less than 0.8 dB and 0.9 dB, the return loss better than
15 dB and 13 dB, and an isolation better than 20 dB and 17.5 dB within
the operation bands of 0.699 GHz-0.960 GHz and 1.71 GHz-2.69 GHz,
respectively.

Table I summarizes the performance of the proposed diplexer. It is
observed that the proposed diplexer can achieve a compact size (in
relative to the maximumwavelength) by comparison with other designs.
The proposed diplexer has lower insertion loss than those from [4] and
[10]. And compared with [15] based on the same technology, the pro-
posed one worked at the lower bands and has the miniaturized size.
Moreover, the proposed diplexer can achieve a miniaturized size
compared with those from [4,5,10,12] and [15]. As shown in the
Table 1, the measured isolation of the proposed design is comparable to
other previous designs even through our designed Fractional Bands are
much larger. And our design can also achieve very low insertion loss in
the wide operation bands compared to other previous designs. It is worth
mentioning that the quoted on-chip diplexer designs occupy a large area
in the mm-operating band, while this proposed design has more ad-
vantages in the 3G, 4G, Wi-Fi and 5G bands and some specific RF
systems.

4. Conclusions

A low-loss diplexer with structures of stacked 2D and 3D inductors
has been introduced using 3D glass-based advanced packaging tech-
nology. By analyzing the coupling effect of the stacked 2D and 3D in-
ductors, the proposed diplexer can achieve low loss and small size
simultaneously. The proposed diplexer can achieve an insertion loss less
than 0.8 dB and 0.9 dB and an isolation better than 20 dB and 17.5 dB in
the bands of 0.699 GHz-0.960 GHz and 1.71 GHz-2.69 GHz, respec-
tively. The size of the proposed diplexer is 1.6 mm× 0.8 mm× 0.25mm.
All the advantages have shown that this design has great application
prospect in 3G, 4G, Wi-Fi and 5G bands and also some specific Antenna
transceiver in RF systems.
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